Estimating standard errors for importance sampling estimators with multiple Markov chains

نویسندگان

  • Vivekananda Roy
  • Aixin Tan
  • James M. Flegal
چکیده

The naive importance sampling estimator based on the samples from a single importance density can be extremely numerically unstable. We consider multiple distributions importance sampling estimators where samples from more than one probability distributions are combined to consistently estimate means with respect to given target distributions. These generalized importance sampling estimators provide more stable estimators than the naive importance sampling estimators. Importance sampling estimators can also be used in the Markov chain Monte Carlo (MCMC) context, that is, where iid samples are replaced with positive Harris Markov chains with invariant importance distributions. If these Markov chains converge to their respective target distributions at a geometric rate, then under two finite moment conditions a central limit theorem (CLT) holds for the importance sampling estimators. In order to calculate valid asymptotic standard errors, it is required to consistently estimate the asymptotic variance in the CLT. Recently Tan and Doss and Hobert (2015) developed an approach based on regenerative simulation for obtaining consistent estimators of the asymptotic variance. It is well-known that in practice it is often difficult to construct a useful minorization condition that is required in Tan and Doss and Hobert ’s (2015) regenerative simulation method. We provide an alternative estimator for these standard errors based on the easy to implement batch means methods. The multi-chain importance sampling estimators depend on Geyer’s (1994) reverse logistic estimator (of ratios of normalizing constants) which has wide applications, in its own right, in both frequentist and Bayesian inference. We also provide batch means estimator for calculating asymptotically valid standard errors of Geyer’s (1994) reverse logistic estimator. We illustrate the method with an application in Bayesian variable selection in linear regression. In particular, the multi-chain importance sampling estimator is used to perform empirical Bayes variable selection and the batch means estimator is used to obtain standard errors in the large p situation where regenerative method is not applicable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Honest Importance Sampling with Multiple Markov Chains.

Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asym...

متن کامل

Estimating hitting probabilities of an interacting particle system on a graph

We consider the problem of estimating hitting probabilities related to a class of interacting particle systems. These systems, in which two types of particles — ‘electrons’ and ‘holes’ — move on a graph, are simplified versions of models describing charge transport in disordered materials. The probability of interest is the probability that an electron reaches a certain region of the graph befo...

متن کامل

On Presentation a new Estimator for Estimating of Population Mean in the Presence of Measurement error and non-Response

Introduction According to the classic sampling theory, errors that are mainly considered in the estimations are sampling errors.  However, most non-sampling errors are more effective than sampling errors in properties of estimators. This has been confirmed by researchers over the past two decades, especially in relation to non-response errors that are one of the most fundamental non-immolation...

متن کامل

General Conditions for Bounded Relative Error in Simulations of Highly Reliable Markovian Systems

We establish a necessary condition for any importance sampling scheme to give bounded relative error when estimating a performance measure of a highly reliable Markovian system. Also, a class of importance sampling methods is defined for which we prove a necessary and sufficient condition for bounded relative error for the performance measure estimator. This class of probability measures includ...

متن کامل

Monte Carlo methods for improper target distributions

Abstract: Monte Carlo methods (based on iid sampling or Markov chains) for estimating integrals with respect to a proper target distribution (that is, a probability distribution) are well known in the statistics literature. If the target distribution π happens to be improper then it is shown here that the standard time average estimator based on Markov chains with π as its stationary distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016